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PART II. FINITE PERIODIC STATIONARY GRAVITY
WAVES IN A PERFECT LIQUID

By W. G. PENNEY, F.R.S. ano A. T. PRICE

SOCIETY
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The possible existence, form and maximum height of strictly periodic finite stationary waves on
the surface of a perfect liquid are discussed. A method of successive approximation to the solution
of the hydrodynamical equations is formulated, and the solution is carried to the fifth order for
the case of two-dimensional waves on a deep liquid. The convergence of the method has not been
established, so that the existence of truly periodic stationary waves is not beyond doubt, but the
calculations provide strong presumptive evidence for their existence, and for the existence of a
finite stable wave of greatest height. The crest of this wave has a right-angled nodal form, in
contrast with that of the greatest stable travelling wave for which the nodal angle is 120°. The
d maximum crest height is 0-141 A, where A is the wave-length, and the maximum trough depth is
:1‘ 0-078 A. This means that the greatest stationary waves are greater than the maximum travelling
! waves, the ratio being 1-53. The motions of individual particles are studied and it is shown that
particles in the surface, particularly those near the anti-nodes have large horizontal motions. For
a given wave-length, the period increases with wave height. The wave pressure on a breakwater
is examined, and the modification of the calculations to allow for the finite depth of water is con-
sidered. Doubly modulated oscillations in a deep rectangular tank are also briefly discussed.
1. INTRODUCGTION
The General Introduction has explained that the considerations developed in this paper
began with some of the breakwater problems of the Mulberry harbours. The emphasis at
that time was of course entirely on numerical values of wave pressures acting on floating
w « . .
0 or fixed breakwaters in finite, even relatively shallow, depths of water; and on the pull on
moorings of floating breakwaters. We wish to express our thanks to the Chief of the Royal
Naval Scientific Service for permission to use the results which we obtained at that time.

However, in attempting to write out our work in a form suitable for publication in the
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PART II. STATIONARY GRAVITY WAVES 255

Philosophical Transactions, the main interest has changed from purely practical numerical
values to formal classical hydrodynamics.

Progressive waves on the surface of water have been considered by many writers, and the
result obtained by Stokes (1880) that the greatest travelling wave has a pointed crest,
enclosing an angle 120°, is well known. By a queer omission, none of the older writers appears
to have considered what is the shape of the crest of the greatest possible stationary wave.
From an argument somewhat more recondite than that of Stokes, we conclude that the
crest of the greatest stable stationary wave has a nodal right-angled form. Possibly there is
some other dynamical condition which prevents stable stationary waves reaching such a
height, but at any rate, we have not been able to discover such a condition.

A method of successive approximations to the solution of the hydrodynamical equations
of stationary waves has been formulated, and in the case of two-dimensional waves in a deep
liquid, the solution has been carried to the fifth order. Even for such a high-order calcula-
tion, however, the results for the wave of greatest height are not entirely satisfactory, partly
because the wave is so big and partly because the mathematical difficulties of attempting to
represent a node by a Fourier series are severe. Arguments explained in the following
sections provide strong presumptive evidence for the existence of truly periodic stationary
waves and of the existence of a wave of greatest height. The algebra could possibly be
carried one stage further, but we have not attempted to do this because the results to be
obtained did not seem worth the effort required. The nodal crest of the greatest stationary
wave cannot be exactly represented by a finite Fourier expansion, and one extra term in the
series can hardly affect any of the numerical values found from the fifth-order expansions.

2. FORMULATION OF THE MATHEMATICAL PROBLEM

We take rectangular axes with Ox horizontal at the mean level of the water and Oy
vertically upwards, the breakwater being in the vertical plane x = 0. The liquid is assumed
to be incompressible and moving irrotationally, so that the velocity (u,v) can be derived
from a potential ¢ which satisfies the equation ,

0’ | 0% _ __9 o __ 09
axz—{—é—}—&—o, where u = 7%’ V= oy (1)

At the breakwater the horizontal velocity u is always zero so that

99 _ _
e 0 atx=0forallt. (2)
If the water is of uniform depth d, the vertical velocity will be zero aty = —d, i.e.
p _
53—,—0 aty =—d for all t. (3)
If the water extends downwards to infinity this condition is replaced by
%»O asy—>—oo for all t. (8a)
Let the free surface of the water at any instant be the surface
J%y,1) =0. (4)

VoL. 244. A. 33
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256 W. G. PENNEY AND A. T. PRICE

Now a fluid element on this surface must move so that its velocity-component normal to the
surface is the same as the normal velocity of the surface itself. Hence the function f must

satisfy the condition i f _of
e +u0x+vay 0. (5)
The pressure at any point in the water is given by Bernoulli’s equation
[7 ““l’o 0¢ _1(q32 2
= ey v, (6)
where p is the density and p, the atmospheric pressure. At the free surface we have p = p,
and consequently o
—gy-+ o — (v =0, (7)

When ¢, u and v are expressed in terms of X, y and t, this becomes the equation to the free
surface, and the left-hand side may be identified with the function f(X,y, t) of equations
(4) and (5). Hence the condition (5) is equivalent to the condition

a‘i+uaﬁ+v3§~0 (8)
used in similar investigations by Stokes and Rayleigh. We find, however, that it is more
convenient to apply the condition (5) to an alternative form of the equation to the surface,
namely, to equation (11) below.

We now seek those solutions of the above equations which are periodic in X, with wave-
length A = 27/ say, and examine whether there is one among them which is also periodic
in t. By this we mean of course that the wave profile and its rate of change are exactly repro-
duced after a given time interval, say T = 27/o. Physical considerations indicate the
existence of solutions periodic in X, since these correspond to the finite oscillations of water
in a vertically sided trough of width 27/k, but in general these oscillations will continually
change in form, and it is not immediately obvious that there will exist an oscillation which is
strictly periodic in the above sense. The problem is thus somewhat similar to that of Stokes’s
travelling waves, the condition of permanence of form of these waves being now replaced
by that of exact reproduction of the wave profile at equal time intervals. The method
devised by Levi-Civita (1925) for proving the existence of travelling waves of permanent
form is not, however, applicable to thé present problem, since it depends essentially on being
able to transform the problem to one of steady stream-line flow. We proceed therefore by
expressing ¢ as a Fourier series in x with coefficients which are functions of t, and then
approximate to these coefficients as Fourier series in t by the method of perturbations. The
resulting solution is in the form of a double Fourier series in X and t, with coefficients which
are power series in a constant 4, where A/m is approximately equal to the ratio wave-
height/wave-length. The solution for deep-water waves is carried as far as terms involving
A% and general formulae are obtained for extending it to any order. For water of finite
depth the solution has been taken only to the second order, since it is found that the results
differ only slightly from those for infinite depth, if the depth is greater than one-quarter of
a wave-length.

The effort required to carry the algebra to 45 is considerable, but only by going to such
high order is it possible.to obtain the greatest stationary wave with 2 or 39, accuracy.
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PART II. STATIONARY GRAVITY WAVES 257

3. STATIONARY WAVES ON DEEP WATER

Any velocity potential which is periodic in X and satisfies (1), (2) and (34) must be

expressible in the form ®
¢ = Zoocn e"™ cos nkx, (9)
e

where a, a,, ... are functions of t. Substituting in (7) we obtain the equation of the free
surface in the form ‘

gy — §Oozn e"™ cos nkx + 1k? % % mna,, &, eI cos (m—n) kx = 0. (10)
n= m=1n=1

The time factors «, in the expression on the left must be such that the surface condition (5)
is satisfied. We shall show that this condition, together with the condition that all the «’s
are periodic with commensurable periods, determines the a’s completely in terms of a con-
stant 4 depending on the amplitude of the waves. Now an equation of the form (10) may
be regarded as an equation to solve for y in terms of x. Since the coeflicients are periodic
functions of x, it follows that y must also be periodic, but it does not follow that y is neces-
sarily real for all real values of x. To take a trivial example, the equation y = 1 —c¢e¥cosx
has a real solution for y as a function of x for all real x only if C<e~2. Hence the existence
of a continuous free surface must impose some limitation on the «’s and consequently on
the constant 4. This indicates that the waves cannot exceed a certain maximum amplitude.
Assuming this condition is satisfied, the solution for y, i.e. the equation of the free surface,
will be of the form

y =1a,+ > a,cosnkx, (11)
n=1

where the a’s are functions of the time. The coefficients a, will of course be zero because the
axis y = 0 has been taken along the mean level of the water, but it is retained because its
presence greatly simplifies and gives a check in the subsequent algebra.

4. CONVERSION TO NON-DIMENSIONAL UNITS

The algebraic labour is very greatly reduced by writing all equations in non-dimensional
form. We put

x =kxX, y=~ky, a,=ka,=2majl, (12)
t = kigit, (13)
D = kigip = % f, €™ cos nx, (14)
n=0
so that f, = kig7iq,. (15)

The surface condition (5) can then be expressed in the form

oo oo o
of " dxdx oy dy’ (16)

and equations (10) and (11) become, respectively,

© 1] © @
y— 20/)’,, e cos nx +5 21 Zlmn/a’mﬁn emtmy cos (m—n) x = 0 (17)
n= m=1n=
and Yy =4ay+ Y a,cosnx. (18)

n=

33-2
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258 W. G. PENNEY AND A. T. PRICE

5. RELATIONS BETWEEN THE COEFFICIENTS IN THE ASSUMED EXPANSIONS FOR @ AND y

Since equation (18) may be regarded as the solution for y in terms of x of equation (17),
the result of substituting the value of  from (18) into the left-hand side of (17) must be an
expression which is identically zero. Hence, if this expression is expanded as a Fourier
series, the coefficients of the separate terms must be zero. This will give a set of relations
between the a,’s and f,’s. To do this we require the Fourier expansion of e cos ux, where
A and p are integers and y is given by (18). We proceed to find the general terms of this
expansion. It is convenient to write (18) in the form
(19)

2]
2 a,e™, where a_,=a,.

l\')l'-'

It is then easy to form the product of this expansion with any similar expansion and pick
out the coefficient of any exponential term. Thus if

—L 5 e (20)
2,-2%
we have - l z z ambn eilm+nyx — l z ( z am o m) eisx, (21)
4m=—°° n=-—0o 43:—00 m=— 00
Hence y? =i _;w Sy(s) e, where S,(s) = _Z_w A Qe (22)
Now let = 2%5200 Sy (s) €5%; (23)

then, using (21), we have

e

yV = yy "1—-‘ Z > a,Sy_i(s—m) e,

s——oo m=—co

which shows that Su(s) = 3 a,Syi(s—m). (24)

m=—ow

Continued application of this last result leads to the explicit formula

Sy(s) =m=2_ =§ rz—w Q@ @y G (25)

It will be observed that Sy(s) = Sy(—s) since a, = a_,. Also
$o(0) =1, Sy(s) =0 for s+=0, and S;(s) =aq, for all s. (26)

We can now write
N 0 /IN © AN £ © .
M=% TV =3 s 3 Si(0)er = 3 E(Ls) e, (27)
© )\N

where - EQ,s) =EQ, —s5) = Nzo 2N—MSN(S). (28)

Note that the term corresponding to N = 0 in the expansion of E(A,s) is zero unless s = 0,
in which case it is unity.
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PART II. STATIONARY GRAVITY WAVES 259

Multiplying the above by cos ux we obtain the required expansion:

eN cos ux = % > E(A,s) {eiltmr 4 eits—ur}
§=—00

= _2_ {E(A,s—p) +EA, s+u)} e

= E(A,p) + Z:ICOS S{E(Ays—u) +EA, s+p)}. (29)

We can now substitute the expression (18) for y into equation (17) and use the formula
(29). This gives

$a,+ Z a,Ccos nx = ,6’0+Zﬂn [E(n, n)+ icossx{E(n,s——n)—I—E(n,s—l—n)}]

—3 E E mnﬂmﬂn[E(m~{—n,m——n)+ gcossx{E(m%—n,s—m—l—n)—I—E(m+n,s+m——n)}:|.
m=1 n=1 s=1

Hence, on equating to zero the coefficients of the separate harmonics, we have

Yoy =fo+ 3 huEnn) =5 3 3 muff, Elm-+n,m—1) (30)

and ! §
a, = Z,[)’,l{E(n,s n)—l—E(n,s—!—n)}—-—;— § %mnﬁmﬂn{E(m—l—n s—m—+n)+E(m+n,s+m (n)}
m=1n=1 31

for all positive integers s.

A second set of relations is obtained by applying the condition (16) to the equation of the
surface, which may be taken in either of the forms (17) or (18). Taking the form (18),
we write o

f(xa Y, t) = —?/+%a0+ z___alam cos mx, (32)
and (16) then gives "

34+ Z a,, COS mx = 2 ma,, sin mx z nf,e”sinnx— 3 nf, e cos nx
n=1 n=1

Ms

I

0
mna,,f3, € {cos (m—n) x—cos (m+n) x}— > nf, e™ cos nx
n=1

M st
S

iMs 1

ot —

mna,, ﬂ,,[E(n, m—n) — E(n, m+n)

1

+ 2 cos sx{E(n,s—m~n) +E(n,s +m—n) — E(n,s—m—n) — E(n, s—I—m—I—n)}]

s=1
—_ gnﬂn[E(n, n) + gcossx{E(n,s—n) +E(n,s+n)}], (33)

on using the formula (29). Since this result is again true for all x, we have, on picking out
the separate harmonics,

Yo=3 3 5 mna,f{Bnm—n)—E(n,m+n)— 3 08, Elnn), (34)

m=1
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260 W. G. PENNEY AND A. T. PRICE
and
. ]. w ©
d, =5 2 g mna,, AE(nys—m+n) +E(n,s+m—n) — E(n,s—m—n) — E(n,s+m-+4n)}
— ;nﬂ,‘{E(n,s——n)+E(n,s+n)}, (35)

for all positive integers s.

Now &, is zero, since the water is incompressible and its mean level therefore constant.
Hence the right-hand side of (34) is zero; this forms a useful check on later calculations.
Since 4, is zero, a, is constant and becomes zero with our choice of axes. Equation (30) can
therefore be regarded as the equation to determine f, in terms of the other coefficients;
f, corresponds to the arbitrary time function in the usual form of Bernoulli’s equation, and
is required only when calculating the pressure. The form of the free surface is determined
by the two infinite sets of equations (31) and (35).

6. THE ORDERS OF MAGNITUDE OF THE COEFFICIENTS

If, for the moment, we consider oscillations of very small amplitude, and retain only first-
order terms, the equations (31) and (35) reduce to

a,=f, and &, =—sp, (36)
respectively, since for small a;
E(,0)>1+3day, and E(A,s)—>%Aa, (s=0). (37)
Hence we have, approximately, |
d,+sa, =0, sothat a,= A cos(t/s+¢,), (38)

and the equation of the free surface becomes
y = > A,cos (¢t /s+e,) cossx, (39)
s=1

where A, and ¢, are arbitrary constants.

The oscillation of the free surface will not in general be strictly periodic because the
frequencies of the various components are not in general exact multiples of the fundamental
frequency. There are, however, an infinite number of periodic oscillations of small amplitude
given by the special cases of (39) in which 4; = 0 unless s = 72, where n is an integer. There
will, presumably, be a corresponding infinite set of periodic oscillations of finite amplitude,
each of which reduces to one of these special cases of (39), when the amplitude is sufficiently
reduced. The finite oscillations which are of special interest are those which reduce to a
single harmonic term when the amplitude is made small. We shall therefore confine our
attention to those oscillations which tend to

y = Asint cosx ‘ (40)

say, as y tends to zero. The coeflicients ¢, and g, will then be of order 4! and the remaining
coefficients will be of some higher order.

Stokes and Rayleigh, in their treatments of the analogous problem of travelling waves,
made assumptions which effectively correspond to taking a, to be of order 4°. This appears
a natural assumption to make, but requires some justification. In the present problem we
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PART II. STATIONARY GRAVITY WAVES 261

shall show that, provided only we assume that the a’s and f’s are expressible in terms of
integral powers of A, then a; must be of order 4° and £, of the same or higher order. We note

first that, since o
Edys) = Ma 432 3 a,a, 4+ (s+0) (41)

m=-—c0

and EA0) = 1+3ag+32 3 aa,+..., (42)

m=—00

E(2,s) is at least of the second order unless s = 1 or 0, in which cases it is of the first or zero
order respectively. Hence to the second order of small quantities, the equations (31) and
(35) become a = b and &, ——f,
o :Bz+%01/)31 and &, = —2f,—a,f, (43)
a,=p, (s>2) and 4, =—sp, (s>2).
It follows that &, 4-a, = 0 to the second order, and therefore
a, = Asint, f, =—Acost to thesecond order. O (44)

That is, there are no terms of order 42 in 4, or f,. The second pair of equations in (43)
then gives . ' . .
Pot2fy = —daf,— 38, —a fy = (— 4% — 4%+ 4%) sint cos
= 0 to the second order.

- Hence, for strictly periodic oscillations, £, must be zero to the second order, since any other
solution of the above equation would correspond to an oscillation with a frequency ,/2
times the fundamental frequency. It now follows that

a, = a,f, = +4%sin%t, (45)
so that a, is of the second order.

The remaining equations of (43) show that, for s>>2, @,+sa, and f,+sp, are both zero
to the second order at least. A repetition of the above argument then shows that, unless s is
a perfect square, a, and f; are zero to the second order. When s is a perfect square, the strict
periodicity of the oscillation would not be upset by taking the solution a, = 4, cos (¢./s+¢,),
where 4, is arbitrary and thus independent of 4, but this would be equivalent to taking
higher order harmonics in the first-order solution (39), and these we have already excluded.
We conclude, therefore, that a, and f, for all s>2 are of the third or higher order.

We can now prove by induction that, for all s, a, is of order 4°, and 4, is of the same or
higher order. For these statements are true for s = 1 and s = 2. Suppose now they hold
good for all s < say, and consider the equation (31) for the case s = p. From the expressions
(41) and (42) for E(A, 5), it will be seen that the term f, E(1,p—1) on the right of (31) (when
s is put equal to p) is of order 4#, and no other term is of lower order. Hence a, = 0(4?).

Now differentiate (31) with respect to ¢ and compare with (35). Remembering that
E(n,p—n) = 1+terms of second and higher orders, when n = p, we find that [5’1, +pB, is
equal to an expression of order not less than 4%. Hence, by the same arguments as before,
B, is of order not less than 4. Thus, if the above statements are true for s<p, they are true
for s = p, and the required result follows by induction.


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

1~

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

262 W. G. PENNEY AND A. T. PRICE

7. VALUES OF Sy(s) AND E(A, 5) TO THE SIXTH ORDER

In order to find the values of the coeflicients a, and f, to any particular degree of approxi-

- mation, say as far as terms in 4%, it is necessary to calculate the function E(4, s), which appears
in (31) and (35), as far as A#~1. The functions Sy(s), on which E(4,s) depends, are easily
calculated in succession from the recurrence formula (24). Remembering that g, is of
order p, the values of Sy(s) as far as the sixth order have been calculated up to N = 6 and
s = 6, and are tabulated below. Beyond these values of N and s, Sy(s) is of order higher than

the sixth: S,(0) = 1, Si(s) =0 (s=0),
$,(0) =a,= 0, Sy(s) —a, (s+0),
8,(0) = 242+ 2a%+ 243,
So(1) = 2a,a,+ 24,45,
S5(2) = a?+2a, a3+ 24,4,
S$5(3) = 2a,a,+2a,a,,
Sy(4) = a3 +2a, a3+ 24, a5,
S2(5) = 2a, a4+ 24545,
S$2(6) = a3 +2a, a5+ 2a,a,;
S5(0) = 6a%a,+12a,a,as,
S3(1) = 343+ 6a,a%+3d3a,,
S5(2) = 6a}a,+6a,a,a5+ 303 a,+3a3,
S3(8) = ai+ 34,45+ 64} as,
S5(4) = 3a?a,+ 6a,a,a;+6a%a,,
S5(8) = 3a, a3+ 3a2a;,
S3(6) = a3+ 6a,a,a;+3a%a,;
8,(0) = 6at+24a2 a2+ 84} as,
S4(1) = 16“?“2:
S4(2) = 4at+18a} a3+ 124} a;,
S4(8) = 124} a,, }
S4(4) = at+12a}a}+ 1243 as,
S4(5) = 4(1?(12,
$,(6) — 6a3d3-+daay;
S5(0) = 40ata,, S5(0) = 2048,
S5(1) = 104, Se(1) = 0,
S5(2) = 85ata,, S¢(2) = 1545,
S5(8) = baj, S6(8) =0,
S5(4) = 20ata,, Sg(4) = 64,
Si(5)—al,  Sa(5) =0,
S5(6) = 5atay;  So(6) — .

The values of E(4,s) up to sixth order can now be written down immediately by sub-
stituting the above values of Sy(s) in (28).
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8. EQUATIONS FOR @, AND f; TO THE FIFTH ORDER

The above values of Sy(s) are sufficient to carry the calculations of ¢, and f; as far as terms
involving 47. We shall for the present take these calculations only up to 4°. This requires
the values of E(4, s) up to the fourth order, and these are easily found to be

E(4,0) = 1+3A%a% +l/l2a§—|—1/13aza2+ aliad,
E(A,1) = Aa,+ %0, ay+151%4,
E(A,2) = Jlay+322a3 + 3%, a3+ 10303 ay +-g5haf,  } (486)
E(4, 3) = {da;+ 1A %a,a,+ #7343,
E(A,4) = Jla,+ 1223 + 1%, a3+ {5130} ay + 551%at. )

Substituting these values into equations (30), (31), (34) and (35), we find, after some
reduction, o .
ay = 20y+ (a4 30105+ §a}) + fo(at 4 2a5) — f1— ai f1— 6a, 5, f,— 43, (47)

= 15)1(1 +3ai+ia,+ 145+ iatay +1a a3+ 13z af) ‘{':32“1 —pi(ay+a,a,+3a}) — 28, fo,)

a; = 81(%‘11 +4a, a5+ 305 +1543) ‘f‘:b')z(l +af) _I_%/éSdl —p1(ay+3a}) — 3p\ Bray—3f1 fs,
as :/731(%“2"‘8‘12+ma4+saz“i‘T%azaz‘f‘%alas +344) —f—/)"zal+/)33—/5’%(a3+a1a2+%a?), (48)
/91(2“3+Ialaz+4 5a3) +/’)2(‘12+ a2)+3ﬂ3a1+ﬂ4,

s =/”1(?‘14+§42+I‘11“3+T€d1“2+m“1) +ﬂ5, /
dy = 0f+ 08, +0f5+ ..., (49)
ay = —f (1 +4af —3ay+ 150t — 10 a3+ 143) —fray, \
ty = —f1(a,+ 150} —as) —f5(2+24}) — 8fsa,,
ay = —f(§ai+ 3a,+ 1350t +Ssafay —8a3 —3a,) —3fra,— 3By, ¢ (50)
=—p ({5 d1+“1“2+243) —fo(2a} + 4a,) — 6830, — 45,
= —f1(s3zat +P0t ar + 85 + 20, a5+ 3a,) — 56 )

The result (49) that 4, is 1dentically zero is in agreement with previous considerations
and forms a useful check on the calculations.

9. SOLUTION OF THE EQUATIONS TO THE THIRD ORDER

We can now, by successive approximations, obtain solutions to the third, fourth and fifth
orders of the above simultaneous equations for the a’s and §’s. We have seen, in § 6, that to

the second order 5 1, [ 102
ay=pf, ay=3%a,f, =33, f)=—A4cost,

and f, is of the third or higher order. Substituting these second-order approximations in
the appropriate terms on the right of equations (48) and (50), we obtain the following
third-order approximations:

a, =/§1+%ﬁ%“ﬂ%/}51: ay = _/91'5‘%,31/5’)%’ |

ay = Bz“’"%ﬁ?a dy = _2:6,2—/91/631’ (51)
:/’)3+%ﬁ?, ds = ‘“3/93”“ 1/’71-

Vor. 244. A. 34
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264 W. G. PENNEY AND A. T. PRICE
From the first pair of equations, we now find that £, must satisfy the equation
ﬁl +lzsé/3%/;il '"2/’3%/’)1 ““/}1:5)% = —ﬁl "‘%/”1/)3%-
In this equation we can substitute the second-order approximation /}"1 = —/, in the third-

order terms. We thus get 5 ;
d Protby = 45— (52)
We require now a periodic solution of this equation which, when third-order terms are
ignored, reduces to f; = — A cost. We therefore assume
f, =—Acosot+y,

where ¥ is of the third order, and ¢ differs from unity by a quantity of the second order.
Substituting in (52) and retaining only third-order terms, we get

024 cosot—Acosot+y+y = —4A43sin? ot cos ot -+ A3 cos ot

= —4A43cos ot +3543 cos 3ot.
Equating coefficients of cos o¢, we have

0% =1—142 (53)
and therefore - j—4y = $43cos 3at,
so that y = —543 cos 3at. (54)

Taking now the second pair of equations in (51) we have
ﬁ2+lglﬁl =—2f “ﬂlﬂp
and substituting for /; from (53), we find
f,+28,= 0 to the third order.

Hence, by the same argument as in § 6, /, is zero to the third order.
Similarly, from the last pair of equations in (51), we have

/353 +3f; =0 to the third order,

and therefore f; is also zero to the third order.
Hence in the equations (51) we may take f, and f; zero and

B = — A cos gt — 5453 cos 3at. (55)

10. SOLUTION OF THE EQUATIONS TO THE FOURTH AND FIFTH ORDERS

We now substitute the approximations (51) into the terms of second or higher order in
(48) and (50) and retain terms as far as the fourth order. In doing this, it will be noted
that a considerable simplification arises from the fact that f,, f; and g, are all of the fourth
order at least. We thus obtain

a; = /5’)1"}“%/53%“/71251, a = */?1+%/71ﬁ%a
ay = P+ 33+ 30— 3% by = —2B,—Bi S =3B B+ Bibus (56)
as = ﬁa“‘%/éif'a ag = "3/93—% 1ﬁ%,

ay = fy+301, ay = —4f,—5p,b3.
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PART II. STATIONARY GRAVITY WAVES 265

From the first pair of equations it is found that the equation (52) is true to the fourth
order, and consequently f, is given by the same expression (55) as before, i.e. #; contains
no term in A4*.

From the second pair of equations in (56), we obtain after making use of (52),

fo+2By = 2013 —Fif1
= $A4*sin 40t — }A*sin 20t.

Hence fo = —1izA*sin 4ot + L A*sin 20t. (57)

From the last two pairs of equations in (56) it follows that both f;+ 38, and f, 444, are
zero to the fourth order. Hence, by arguments similar to thosein § 6, f; and §, are themselves
zero to this order. .

To carry the solution to the fifth order, we substitute the fourth-order approximations
(56) into (48) and (50). This introduces the following additional fifth-order terms which
have to be added to the expressions (56) for a, and ¢, when s is odd. There are no fifth-order
terms in q, or &, when s is even:

[a,]s = ﬂ‘ll/)sl“’zs*s %fé?+%§_g .?4‘%/3)152“2/’)1&:
[a,]5 = =383 03 + 1521 Bt + 3B\ Bo—F1Fas
[a5]s = —$2A1 0 +-8820Y +- 851 P
[ds]s = 30T — 1386161 — 8P 1Pa— 361 fo;
[a5]5 = 1635+:15_§’%/)3?a .
[d5]5 = — 505 — 38241 /1

From the expressions for a, and &, taken to the fifth order, we now find, on eliminating

a,, that f§, satisfies the differential equation

:551 +p1 = 4415} —/5)13+Qﬂlﬁ%*%ﬁfﬁ%‘F‘Lﬁlﬁz‘I"lﬂlﬁw (524)

Substituting the fourth-order approximations of £, and £, into the terms on the right of this
equation, and solving the equation, we find that

[y = —Acos gt — (543 — P32 A5) cos 3ot —FAEELA5 cos bot, (55A)

and 02 =1—3$A42—{&%A* (53A)

Since a, and 4, contain no fifth-order terms, the differential equation for £, is unchanged,

and consequently f, is given by the same expression (57) as before. Also since a, and 4,

contain no fifth-order terms it follows that f, 44, is zero to the fifth order, so that we can

take f, as zero also to this order.
From the expressions for a; and d; we find

Ps+ 38y = 36,51 —3B/%,
and hence, on substituting for £, and solving the equation,

fs = —4gd’ cos ot — A5 cos 3ot + 5144545 cos 5ot. | (58)

Il

(56A)

Similarly, from the expressions for ¢, and @5, we find

/355 + 545 = —%%ﬂl/;hl})
and therefore Bs = 155zA4° cos ot +5453545 cos 3ot — 55z A5 cos 5at. (59)
342
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11. THE WAVE PROFILE

The coeflicients in the expression (18) for the wave profile are obtained as far as terms
in A5 by substituting the above expressions for the /’s in (56) and (56 A). We find, after some
trigonometrical reductions,

a; = (A+3EA4° —3&5A45) sin ot + ({543 —531545) sin 30t + 5183545 sin 50t,

a, = FA? 4544 — (342 — 355 A4%) cos 20t — 1 815;.4% cos 40t

ag = (3543 —5t54%) sin ot — (343 — 2225 A5) sin 30t — 5355 A5 sin bot, (60)

$A4*—}A* cos 20t 455 A4% cos 4ot,

N
N
Il

145 45 j 1545 i 85 _ A5gi
a5 = 163 A%sin ot — £ L5 A5 sin 30t + 5835545 sin 50t

I

When ¢t = nm, where 7 is any integer, we have ¢, = a; = ¢, = a; = 0, while a, = 144, so
that the wave profile is then — 14%cos 2x. (61)

We thus see that there is no instant at which the surface is perfectly flat, the nearest approach
to flatness being the modulated surface given by (61). The modulation represented by (61)
is, however, very small, and it is unlikely to be noticeable in any real case. Nevertheless,
the above result does imply that strictly periodic oscillations of finite amplitude cannot be
generated by impulsive pressures applied to the initially flat surface of water at rest.
When ot = (n+%) n, where n is an integer, the values of all the 4’s are zero. Hence «
and v are zero everywhere, 1.e. the water is momentarily everywhere at rest. At any such
instant the wave profile has its maximum amplitude. When 7 is even, this profile is given by

y = (A+3A°—7454°%) cosx+ (342 — g5 A*) cos 2«
+ (843 —1258245) cos 3x++A* cos 4x+ 23345 cos 5z, (62)

and when 7 is odd it is given by the same expression except that 4 must be replaced by — 4.

It follows that strictly periodic oscillations could be produced, at least in theory, by
heaping the water up so that its profile has the form (62) and then letting it move from rest
in that position. After a time equal to one-quarter of the period the profile would fall to
that given by (61), and after a further equal interval of time it would build up again to the
form given by (62) with —A4 replacing 4, i.e. to the same form as the initial profile, except
that the crests now occur where the troughs were initially.

It will be seen that the form of the profile at its maximum amplitude is not very different
from that of travelling waves of permanent form, which to the fourth order is given by

y = acos x+ (3a®+3%a*) cos 2x + §ad cos 3x +%at cos 4x. (63)

In both cases the crests become sharper and the troughs flatter as the amplitude is increased.

It is of interest to note that there are no points on the surface of the water which have no
vertical movement at all. At the points x = (n+ %) m, which are true nodes in the case of
infinitesimal oscillations, there is an up and down motion given by

Y = —ay(t) +ay(t), ,
so that the water level varies at these points between —14* and —}A42-+1314% the total
extent of the movement being +3$A42—134%.
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We also find that the mean position of the water surface, averaged with respect to time,

is not a horizontal plane, but is given by

y = (242 ++54*) cos 2x + 4% cos 4x, (64)
so that there is a rise in the average level at the antinodes (x = nn) of amount $A4%+43:A4%,
and a fall of the average level at the nodes (x = (n+ %) 7) of amount }A42 —%4%.

The period of the oscillations is given, in non-dimensional units, by 27/o, where o2
is given by (53A). It follows that the period is increased, when compared with that of
infinitesimally small oscillations, in the ratio (1—21A42—3%:A4%) 7 ie. 14+342442:4%,
approximately.

12. THE MAXIMUM HEIGHT OF STABLE TWO-DIMENSIONAL PERIODIC STATIONARY WAVES

We come now to consider the most interesting but the most difficult part of our discussion,
namely, the question whether there is a limiting maximum amplitude for two-dimensional
periodic stationary waves. In so far as we have passed over the even more difficult mathe-
matical question of the existence of finite stationary waves, our treatment will still be logically
incomplete. However, if our demonstration on the limiting amplitude survives criticism,
we have at least provided prima facie evidence that finite stationary waves of a permanent
form in a perfect liquid are mathematically possible.

Before beginning our discussion of the stationary waves, it may be helpful and pertinent
to make some remarks about the corresponding problems of the existence and maximum
amplitude of finite progressive waves. Levi-Civita (1925) has proved that finite waves
exist, but in order to establish the convergence of his solution a number of assumptions had
to be made which effectively reduce the wave height above mean level to a very small value
compared with the wave-length. The greatest value of this ratio which will satisfy all the
conditions of Levi-Civita’s proof appears to be about 0-005; one of Levi-Civita’s inequalities
can, however, be replaced by a less drastic one which raises the above ratio to 0-01. Now
‘Stokes (1880) and others, using the method which we have followed and extended in our
investigations, showed how to solve the hydrodynamical equations in the form of Fourier
series with coefficients which were infinite series in the wave parameter ‘a’, corresponding
with our 4, and took the solutions to the fourth power of a. There was nothing in these
investigations indicating a maximum value for a; the possibility of a maximum value for
a came from a quite independent hydrodynamical point. Stokes, it will be remembered,
considered the particles moving near the surface. Making local expansions for the velocity
potential and the stream functions near the crest, it is easy to show that the gy terms in the
pressure equation have to balance out with the q? terms, and therefore q was of order rt.
Consequently, ¢ and ¢ were of order r* with which are associated the angular functions
cos $0 and sin §6. The limiting possible stream line was therefore two straight lines, making
a sharp corner at the crest, enclosing an angle 27, i.e. 120°.

The present position on progressive waves is therefore

(1) Stokes, Rayleigh and others solved the hydrodynamical equations as Fourier power
series up to any desired order. ’

(2) Levi-Civita proved that finite but small progressive waves of permanent form do exist.

(3) Stokes showed that, if progressive waves exist having a discontinuity of slope at the
crest, the angle there is 120°.
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The reasonable attitude may therefore be taken that finite progressive waves exist up to
amplitudes consistent with (3), and that the form of these waves can be obtained from the
solutions (1) by inserting the limiting condition (3). Michell (1893) discussed the limiting
form of progressive waves by a new method, which was extended by Havelock (1918) to
waves of smaller height. Havelock showed that, for small amplitudes, Michell’s method led
to results in good numerical agreement with those obtained by the method of Stokes. The
possibility still exists, although it is remote, that there is some other as yet unknown mathe-
matical point (connected with convergence of the series) equivalent to some mechanical
condition more stringent than (3) greatly reducing the maximum permissible amplitude
to a value more nearly equal to that required in Levi-Civita’s proof.

Turning now to finite periodic stationary waves, we have a situation where the in-
vestigation corresponding with (1) above has been made in the present paper, but so far
we have nothing corresponding with (2) or (3). There seems little likelihood that a proof of
the existence of the stationary waves will ever be given, corresponding with Levi-Civita’s
proof for the progressive waves, because the motion is much more complicated from the
mathematical point of view. The form of the surface can be kept constant in time for the
progressive waves by using co-ordinates moving with the wave velocity, but no such sim-
plification can be made for the stationary waves. We therefore abandon hope, at least for
the present, of proving the existence of stationary waves, and inquire whether there is any
hydrodynamical condition, analogous to (3), allowing us to use our Fourier expansions up
to the limiting amplitude permitted by this new condition which replaces (3). In other
words, we try to do what Stokes and Michell did in obtaining the maximum amplitude of
progressive waves, on the assumption that the waves exist.

Our form of the condition limiting the amplitude of the stationary waves may be obtained
in several ways, all reducing to the same mathematical condition. We assume for simplicity
that the condition applies to the crest at its maximum height. The condition really applies
anywhere on the free surface, but as the motion is most extreme at the crest at its greatest
height we do not unnecessarily complicate our arguments with a more general discussion,
ultimately applying them to the crest.

Our first method of obtaining the limiting condition starts with zero pressure over the
free surface. We postulate that the liquid cannot withstand tension. Then at the crest (or any-
where else in the surface of the liquid), at all times, the pressure just inside the liquid must
be positive or zero and consequently at the crest

ap
3y <0 (65)
The y-equation of motion at the point (X,y,t) is
ov _dv  _dv 1dp
At the instant of greatest height at the crest (and indeed everywhere) u = 0, v = 0 and
therefore v 1dp
Substituting (65) in (66), we see that
—e—Pco. (67)

ot =
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The non-dimensional form of this equation is
v
372 —1. (68)

Consequently, the criterion limiting the amplitude of the waves is that the downward
acceleration at the crest at its greatest height must not exceed g (or 1 in non-dimensional
units).

Now suppose that the pressure over the free surface is not zero, but is positive. The liquid
is no longer in tension, but if dp/dy is positive at the crest at its greatest height, then from the
equation of motion (66), the downward acceleration in the liquid just below the top of the
crest is greater than it is at the crest. This we regard as physically untenable.

Our second version of the mechanical condition controlling the maximum amplitude is
based on the stability of a modulated free surface. Taylor (1950) and Lewis (1950) have
shown that if a perfect fluid of lesser density rests on a perfect fluid of greater density and the
system is suddenly accelerated downwards with an acceleration greater than g, the inter-
face is unstable. Ripples on the surface grow exponentially, and the exponent is propor-
tional to the inverse square root of the wave-length. Now our analysis shows that waves of
wave-lengths submultiples of A are present in the finite waves. The shorter the submultiple
wave-length, the more acute is the instability, once the instability is present. In our case,
the lighter fluid is of course of zero density (i.e. vacuum). The criterion of stability, first
operative at the crest at its greatest height, is by the theory of Lewis and Taylor

av
g—f-af?().

A A

SOCIETY

OF

This is precisely the same as (67).

The third method of revealing the condition which limits the amplitude of the waves is
analytical rather than dynamical.

Our solution of the hydrodynamical motion is based on the assumption that equation
(17) for the free surface can be solved for y as a function of x in the form (18), and the con-
dition (16) has then been used to determine the coefficients #,, appearing in (17), in terms
of the parameter 4. It is therefore necessary to inquire whether there is actually any finite
range of values of 4 for which the equation (17) has a continuous real solution for y as a
function of x, for all real values of x and ¢. If the equation has such a solution, it is necessarily
expressible in the form (18).

The maximum permissible value of 4 for a continuous free surface to exist is given by
the maximum value of 4 defined by the implicit relation

p(Aaxsy) =0, (69)
where p is the pressure expressed in non-dimensional units. The function p(4, x,y) is in
fact the left-hand side of equation (17).

Since 4, regarded as a function of real variables ¥ and y, is to be a maximum, we must have
94 _ _ opjox _
dx  dplod
o4 _  oploy _
dy — dplod

y
A B

SOCIETY

OF

0, (70)

0. (71)
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The first of these is apparently satisfied at the crest position because by symmetry dp/dx
is zero, but this result needs closer examination because the crest is a singular point (see
later). The second requires dp/dy to be zero with the same reservations with regard to a
singular point. Once again, the equation of motion at the moment of greatest height gives
(68) as the criterion of greatest height.

We have now reached the position that if there is some amplitude of the wave such that
at the crest at its greatest height the downward acceleration equals g, any attempt further
to increase the wave height results in a loss of permanent form. The crests break up and the
periodicity is destroyed. There is, however, no a prior: reason why such a situation should
ever arise. The amplitude might indefinitely increase and the period indefinitely increase
in such a manner that the downward acceleration never does become equal to or greater
than g. Our equations to the fifth order give strong presumptive evidence that there is in
fact a limiting wave height.

The numerical value of 4 in the stationary wave of maximum amplitude may be obtained
from (68), using our earlier expressions for ®. There are two reasons why it is necessary to
go to high-order harmonics in order to get reasonable numerical accuracy. The first is
that (68) involves a double differentiation of ®, thus giving an amplification by #? of the
nth harmonics in the expression for the wave profile (compared with only an amplification
by n in the Stokes-Michell progressive wave problem, where the limiting amplitude is
obtained from a slope, requiring only a single differentiation). The second unfavourable
circumstance is that the maximum value of 4 is approximately 50 9, greater than that for
the progressive waves.

At the crests, we have from (14) that

O =24 ew.
Hence Vo= —

= —Xnf, em. (72)
To apply condition (68), we require dv/dt at the instant when the crest is highest, i.e.
when its velocity v is zero. Denoting the maximum crest height by Y, we have that dv/dt at
the required instant is given by o _
5 =—Znf,em, (73)
evaluated at ot = }m.
The values of the first five ’s at ot = {7 follow from § 10 and give to 4°

o 19 431 _755: 45
ﬂl"A""s‘z“A +1792A>

ﬂz = _"1—54‘44,
83 = —T%TASa
/).)4 = 0:

/)')5 = §1‘5‘5€A5-

The crest height Y is required only to fourth order and is to fifth order
Y = A+ 4%+ 3343 47344+ e A (74)
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Our condition limiting 4 is d/d¢> — 1. Substituting ¥ and the f’s in (73) and expanding
to the fifth order, we find that

A+ A2+ 1343 —F A4+ 231A5< 1. (75)
The maximum value of 4, including terms up to 4%, is given by
4 = 0-592.

The convergence in the equation for the maximum value of 4 and the corresponding
peak appears to be good and the accuracy is apparently better than 1 9%,. However, the
point must not be overlooked that such a large value of 4 means that our replacement of
the exponentials in the high-order harmonics by unity is drastic, and the wave profile very
near the crest is probably not reliable. In any case, the slope is wrong, since the crest has
a node enclosing an angle 90° (see the following section).

Taking 4 = 0-592, it will be found that the maximum height of the crest in the greatest
stable wave is 0-885 above the level the liquid would have if it were at rest; and the greatest
corresponding trough is 0-482 below this same level. Since the wave-length is 27, we have
that the maximum crest height is 0-1411 and the maximum trough depth is 0-077A. The
maximum crest to trough distance is therefore 0-2181. The corresponding three figures
for the highest stable progressive waves are 0-095, 0-047 and 0-1431. The maximum up
and down distance in stationary waves is less than twice the crest to trough distance in
progressive waves, the actual ratio being 1-53.

A check on the reliability of the values 4 = 0-592, Y = 0-885 may be had by solving
simultaneously for 4 and y the following pair of equations, retaining the full exponential
expressions at x = 0, ot = }n b=0, 0pldy=Do.

One then finds that 4 = 0-52, ¥ = 0-75, and the wave profile, computed from the isobar
p = 0, does correctly have a right-angle node at the crest. The value of Y obtained in this
way should be appreciably less accurate than that found by the consistent fifth-order
approximation, and we therefore expect that the value ¥ = 0-885 quoted above is at least
accurate to within 2 or 3 9.

13. THE SHAPE OF THE CREST OF THE GREATEST STATIONARY WAVE

An interesting deduction can be made about the shape of the tip of the crest of the greatest
stationary wave at the moment of maximum height. Our iterative method, if valid, esta-
blishes that the wave motion can be generated precisely by releasing the fluid from rest
provided the surface has been shaped to the right form by a constraint which is suddenly
removed. Suppose then that the wave of maximum possible height is generated in this way.
The dynamical condition which tells us that the wave actually is the one of greatest height
is that the initial downward acceleration at the top of the crest, in non-dimensional units,
is just unity. This condition is equivalent to dp/dy zero at the tip.

We shall now show that our solution, when taken to the limit, requires that the angle at
the tip of the greatest wave is 90°. Of course, the expressions for the wave profile, when taken
to any finite order, since they involve only cosines of nx, necessarily give a wave profile at
the crest having a horizontal tangent. Only by taking infinite-order expansions can the

VoL. 244. A. _ 35
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true dynamical shape of the profile be represented by a Fourier series. On the other hand,
the limiting isobar p = 0, the free surface, does correctly have a right-angled crest for the
maximum wave if the full exponential expressions are retained. The numerical accuracy
which is being achieved to any order is revealed by the agreement between the numerical
values of the profile and the isobar p = 0 obtained from the pressure equation, retaining the
exponentials (see the last paragraph of §12).

The equation of the free surface of the maximum wave at the instant of greatest elevation
may be regarded as given by the implicit relation

p(x,y) =0, (76)

where the curves p(x,y) = constant map the isobars in the (x,y) plane. Assuming that
p(x,y) is continuous everywhere in the liquid, then for a small displacement (0¥, dy) from
the point (x,y) we have P
_ gy, 9
dp = o 6x—|—0yb‘y.

1-0

— 1

0-5

uy i 373

_,O. 5.._

Ficure 1. The profile of the greatest stationary wave at its greatest height to fifth order. The
scales in the x and y directions are not equal, that in the y direction being 137 (or 1-748) more
open than that in the x direction. The fifth-order expressions, like those to any other finite
order, give a horizontal tangent at the crest, and we have shown by a dotted line at the right-
hand crest our guess at the true profile.

Take the origin at the tip of the crest, and take the displacement (dx, dy) to be such that
the new point also lies in the free surface. Then, for a displacement which never leaves
the fluid

’ _ %y, 9
0= 6x+ay 3y. (77)

Now, we have already said that at the tip of the crest, dp/dy, is zero. We deduce that dp/dx
is also zero. The tip of the crest, i.e. the origin, is therefore a singular point.

Proceeding to the second order in dx, dy we have, again for a point lying in the free surface
near the origin .

’ _ % g2 o 0P P g2
O«—%—c—z&c +23x3y5x5y+5?3y . (78)

The y-axis is a line of symmetry. Any differential coeflicient involving an odd number of

differentiations with respect to x is therefore zero, but there is no corresponding symmetry
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argument relating to odd differential coefficients in d/dy. We see that 9%p/dx dy is necessarily
zero. Furthermore, since p is obtained from a velocity potential by the dimensional equa-

Hons blp = $-+ay—3d?,
and q%=0 initially, we have that p must satisfy initially

e e AL (70
Equation (78) therefore reduces to
72 (w—dy?) = . (80)
Hence, at the origin initially Sy = -+ Ox.

The tangents at the tip of the profile therefore meet at right angles. Only if 925/dx2 is aiso
zero can this conclusion be avoided. ,

To illustrate the above arguments, let us work out the details using only the lowest
harmonic. In non-dimensional units, for this case

p=evcosx—y—1. (81)

The equation of the free surface, from which position the motion starts at rest, is the
implicit equation corresponding with (76)

0=evcosx—y—1. (82)
At the origin dp _ _evsing — 0,
ox 83)
ap (

= ==eY%cosx—1 = 0.
dy

These relations show that the origin is a singular point.

Again P’

Froh —e¥Ycosx =—1,
2
%‘g= evcosx =1, (84)
2
a‘i—% = —e¥sinx = 0.
The second-order differentials thus give
X
o=l (85)

We have proved that if deep liquid at rest, with a surface modulated according to (85),
is suddenly released, the acceleration downwards at the tip is just 1, or g in dimensional
units.

If the pressure equation (82) for the maximum wave is replaced by a more elaborate
pressure equation to any order, obtained by the methods explained in this paper, an easy
extension of the above example proves that the angle at the tip of the crest always

'35-2


http://rsta.royalsocietypublishing.org/

-

J \ \\

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

274 W. G. PENNEY AND A. T. PRICE

remains 90°. The value of 0%p/dx? is not zero. We are therefore justified in saying that if our
equations are tending to the solution of the stationary wave, then the limiting stationary
wave has a right-angled node at the tip of the crest.

A brief digression may now be made to explain a point which puzzled us for some time.
Forget that we are discussing stationary waves and consider fluid released from rest with the
free surface symmetrically modulated about x = 0. Two cases are of interest—one where
there is an initial nodal mound pointing upwards, and the other where there is a nodal
depression pointing downwards. What are the differential relations at these singular points ?
The reason why we were puzzled was that the arguments given above at first sight still
apply, and therefore in both cases the nodes have to be right-angled.

However, the initial shape is arbitrary, and because this is so, the above argument
appears to be fallacious. The dilemma is most easily removed by an appeal to the complex
variable, and, from the standard potential theory, the following conclusions are easily
reached. In the case of the nodal depression, dp/dx and dp/dy become infinite at the node,
but their ratio tends to 4-£, depending on whether the approach is made from the positive
or negative side of the y-axis. The equation of the tangents at the node is dy = -+ £dx.

In the case of the nodal elevation, dp/dx, dp/dy, 0*p/dx2, 3%p|dxdy, 0%p/dy? are all zero. If
the angle of the node divides into 7 exactly m times, then the first differential coefficients of
pinitially not zero at the node are those of mth order, not odd in d/dx. If the angle of the node
divides into 7 a fractional number m-j, where j is between zero and unity, then all differ-
ential coeflicients of p up to the mth order are initially zero at the node. The differential
coeflicients of order (m--1) are infinite, but their ratios are such that the (m--1) order
differential expressions tend to the solution dy = 4 £dx as the node is approached.

The above digression will be recognized as part of an attempt at the extension of the
Poisson-Cauchy theory of the waves generated by an initial disturbance to finite distur-
bances. The general problem is probably beyond analysis, but numerical solutions could
be developed for special cases, and these solutions would have to conform to the differential
relations obtained above.

Finally, we make the observation that our conclusion that the crest of the greatest sta-
tionary wave at its maximum height is a right-angled node does not depend on the depth
of liquid being infinite. Some interesting questions arise on the shape of stationary periodic
waves in shallow depths, but we do not attempt the answers here.

14. THE PARTICLE MOTION IN TWO-DIMENSIONAL WAVES

In this section the paths along which the individual particles move will be considered,
the calculations being taken as far as terms in 4% Consider the particle which is at (x, )
at time ¢ = 0. Letit be‘ at (x+X,y+Y) at any subsequent time ¢, so that its velocity in non-
dimensional units is (X, Y). Then

X = —’;—f at (x+X,y—+7Y)
= f,ev*¥sin (x+ X) 424, eXv*Vsin (2x + 2.X) (86)

to the fourth order. Similarly,
7 = —f,e¥*Tcos (¢ + X) — 24, eX¥+Dcos (2x + 2X). (87)
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We note first that, since f, is of the fourth order, the equation
Y
%:}=—~cot(x+X) (88)

is true up to the third order. On integrating this equation, we see that the particle must lie
on a curve which is given to this order of approximation by

Y = —Xcotx+3$X?cosec?x—1 X3 cosec?x cot«. (89)

Hence the particle must oscillate backwards and forwards along an arc of the curve given
approximately by (89). This result does not, however, indicate the limits of the motion of
the particle, nor its actual position at any particular instant. To determine these it is neces-
sary to integrate the above equations for X and ¥ by successive approximations. The first-
order solution is easily seen to be

X=—Ae¥sinxsingt, Y= AeYcosxsindt, (90)

corresponding to simple harmonic oscillations of amplitude 4e? along the straight line
Y = —Xcotux.
For the second-order solution, we find

X =—Acosoted (14 7Y) (sinx+ X cos x)

=—AeYcosot(sinx+ Xcosx+ Ysinx) = —AeYcosotsinx
on using (90). Hence
X =—AeYsinotsinx to the second order.
Similarly Y = Ae¥ cos gt(cos x+ A e¥ sin gt),
so that Y = Ae¥sin ot cosx+ 1A% e sin? ot.

To extend the solution to the third order, we must use the expression (55) for §, and take
o = 1—§A>2 Integrating equations (86) and (87) with these values of #, and ¢ and using
the above second-order approximations for X and Y, we find

X = —{(4+3}4%) sin gt + $5A3sin 30} e¥sin x, (o1)
) 91
Y = {(A+143) sin 0t +£54%sin 304} ¥ cos x+ §A%sin? ot €2 -1 A3 sin3 g# €3 cos x}

It is easily verified that these values of X, Y satisfy the equation (89) to the third order.

For the fourth-order solution we have to introduce f, as given by (57) as well as f, into
equations (86) and (87), together with the above third-order approximations for X and Y.
It is sufficient to take ¢ = 1—342 as before. This leads to

X = —{(4+343)sin ot +5A4%sin 30t} e sin x )
+{3A*sin? 0t — 135 A*sin? 204} €% sin 2x,

Y = +{(4+44%) sin 0t +P543sin 30t} e¥ cos »
—{}4*sin? gt — 1354%sin? 207} e cos 2%
+{(34%+ g5 4*) sin? gt — FrA*sint ot} e

+ §43%sin3 ot €% cos x + {5 4*sint ot €% (2+4-cos 2%). |

’ (92)
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The particle motion is greatest at the free surface and decreases exponentially with depth
below this surface. The paths of the particles which at time ¢ = 0 are on the free surface given
by (61) are shown in figure 2. Any particle which is on the free surface at time ¢ = 0 will
remain on the surface for all time. Hence the extremities of the paths of the particles shown
in figure 2 should correspond to the position of the free surface when the waves have their
maximum amplitude. Using the above equations (92) for the particle motion, it has been
verified analytically that any particle which is on the free surface at time ¢ = 0 is on the
surface as given by (18) and (60), to the fourth order, at time ot = .

m2r

2t

Ficure 2. Two successive positions of the greatest stationary wave at its position of maximum

height. The paths of the particles in the free surface are also shown. Particles in the surface,
particularly those near the anti-nodes, have surprisingly large horizontal motions.

15. OSCILLATIONS PRODUCED WHEN WAVES OF FINITE HEIGHT IMPINGE ON
A VERTICAL BREAKWATER

Suppose that an infinite train of waves of permanent form, of a certain height and wave-
length, is travelling in the positive x-direction in a perfect liquid of infinite depth. Then,
as follows from the work of Stokes (1880), Rayleigh (1899) and Levi-Civita (1925), the
profile of the waves is unique. Suppose now that at some instant a rigid vertical barrier is
inserted into the liquid, let us say through the top of one of the wave profiles. Consider the
wave pattern on the negative x side of the barrier. A reflected set of waves moves outwards
from the barrier, against the oncoming infinite train. It is obvious that in a perfect liquid,
a stationary wave pattern will never be set up.

Wehave atour dispésal only the solutions of two essentially steady-state problems, namely,
that of travelling waves and that of stationary oscillations. These two steady states cannot
co-exist, and we are now concerned with the transition from a state which is represented
approximately by one of them to a state represented approximately by the other. In this
transition there must enter some physical feature of the phenomena which is not taken into
account in the steady-state solutions. We might imagine in the present case, for example,
that the fluid motions are subject to slight damping effects, and that, consequently, the
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disturbance of the incident waves by the breakwater will gradually. decrease as we move
farther away from it. We thus have the conception of a gradual transition from a state
represented approximately by Stokes’s travelling waves at great distances from the break-
water to a state represented approximately by stationary oscillations at points close to the
breakwater.

Alternatively, we might imagine that the breakwater is only of finite length, say a few
wave-lengths long. The reflected waves now give a beam, gradually dispersing, but near
the breakwater the pattern is approximately stationary.

The period of the travelling waves is identical with the period of the stationary waves,
but the wave-lengths and heights are different. Let us regard as the two independent
dynamical variables the wave-length A, of the travelling waves and the coefficient H, of
the lowest harmonic component cos {(27/1) (x —ct)}, where ¢ is the wave velocity. Let the
wave-length of the stationary waves be A, and the coefficient of the lowest harmonic
cos 2mx/A, be H,. Then from Stokes’s or Rayleigh’s results for the travelling waves and from
our results for the stationary waves, we have that the period T of each set is to second order

given by T (%);[1*%
g 2
_(2mA,\} m2H?
- (_g_) [1+ o1 ] (93)
From this pair of equations, to second order, it follows that
4 (m\?
Ay +(-) (H3+4H?). (94)
A, 4
When the wave heights are small ~ H, = 2H,.
A4 A%
Consequently +=1+8 (—«) H3. (95)

This approximation must still be fairly good when the waves are no longer small, because
the two periods are going in opposite directions—the travelling waves go faster with in-
creasing height and therefore for constant wave-length the period decreases with height,
while the stationary waves become slower with increasing height. If we put H; = 0-051,,
corresponding with the longest waves observed at sea, we find

Ay /A, = 1-20.

The stationary waves produced by reflexion are roughly 20 %, shorter than the incident
waves.

16. TWO-DIMENSIONAL OSCILLATIONS IN A DEEP RECTANGULAR TANK

The results obtained earlier can be applied directly to the two-dimensional oscillations
of a perfect liquid in a deep rectangular tank. The wave-length is such that the tank contains
an integral number of half wave-lengths. The depth of liquid in any real tank, of course,
will be finite, and might well be small compared with the length of the tank. For this case,
we should need to use formulae relating to finite depth rather than those for infinite depth,
and the appropriate formulae, at least to second order, are given in §17.
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If A, is the wave-length of the nth mode of oscillation, then
A, = 2L/n, (96)

where L is the length of the tank.

The wave-length A, of the gravest mode is 2L, and the oscillation is such that when there
is a crest at one end of the tank there is a trough at the other. The next gravest mode has
wave-length A, = L, and the oscillation is such that when there are crests at the two ends
there is a trough at the centre, and vice versa.

The heights of the crests and troughs are obtained from (62), and may be put in dimen-
sional form by reverting to (12). The period of oscillation of the nth mode is given by

3
r, - (2rhle) o)
where, from (53A), ¢, is given by "
0?2 = 1—3}A%2—{45:4% (98)

The wave profile is fixed by the non-dimensional parameter 4, but as shown in §12,

A has an upper limit of 0-592.
The height of the crests above the level which the liquid would have if it were at rest, in

the nth mode, is given from (62) or (74) as
H, - %{A+%A2+%%A3+%%—3—A4+0-116A5},
and the depth of the trough in the nth normal mode is given by
D, = A% {4~ A2 4 3345 4541 4 011645,

In order to demonstrate the numerical magnitudes of the changes caused by the finite
amplitude, consider a tank which has a length g/27, say 5-12ft. The gravest symmetrical
oscillation of such a tank in infinitesimal oscillation is 1sec., and the wave-length of this
mode is the length of the tank, i.e. 5-12ft. Table 1 gives some numerical values for the
period, the height of the crests and the depth of the troughs for various values of 4.

TABLE 1
4 T (sec.) H (ft.) D (ft.)
0 1-000 0 0
0-2 1-005 0-182 0-149
04 1-021 0-418 0-278
0-5 1:034 0-565 0-343
0-592 1-051 0722 0-394

17. DOUBLY-MODULATED OSCILLATIONS IN A DEEP RECTANGULAR TANK

An obvious modification of the early sections is to treat purely periodic stationary waves
modulated in two directions at right angles. We are now dealing with the truly periodic
oscillations of a liquid in a deep rectangular tank, the waves being modulated in both

directions.
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One might also investigate whether there are truly periodic oscillations in a deep circular
tank, the simplest having circular symmetry, while more complicated oscillations are also
azimuthally periodic in some integral fraction of 2. We have not attempted this type of
investigation.

The solution is given below up to second order of the doubly-modulated periodic finite
waves in a deep rectangular tank.

Taking x- and y-axes horizontal and parallel to the sides of the tank, and the z-axis
vertically upwards, we consider those oscillations of the water surface which would approxi-
mate to the form 2 — ay,(t) cos IX cosmy
when the amplitude is sufficiently reduced.

The general expression for the surface will be of the form

§ »(t) cos nix cos pmy. (99)

IIMS

We find that the coefficients a,, a,, and a,, are of order af,, while the remaining coefficients
are of higher order and will therefore be neglected.

The corresponding expression for the velocity potential, as far as the second-order terms,
1 ¢ = o, (t) € cos IX cos my + ay0(t) €% cos 20X + oy, (t) €27 cos 2my, (100)
where £2 = [24-m2.

On substituting in Bernoulli’s equation, we obtain

L=bo — —ga 4wt vi W) + (Y

= — gZ+d,; e cos IX cos my +d,, €% cos 21X -+ d,, 2™ cos 2my
— 402, e?* (m? cos? X+ 2 cos? my) + F(t). (101)

At the surface p is equal to p,; hence substituting from (99) in (101) and retaining terms
up to the second order only, we get

— g(ay; cos IX cos my + a,, cos 2IX + a,, cOs 2mY + a,, cos 21X cos 2my)
+a,,{cos IX cos my + }ka,;(1+ cos 2[X + cos 2my + cos 2/X cos 2my)}
+dyy €08 2[X - d, cos 2my — taf | (k2 + 12 cos 2my + m? cos 2IX) + F(t) = 0,

for all x and y. Equating to zero the coeflicients of the separate trigonometrical terms gives

F(t) = K} — tkay dyy, (102)
—&ay+dy; =0, (103)

— gl +dg— fm?af; + fhay dyy = 0, (104)
—gagy+doy — 4170}, + tkay 4y = 0, (105)
— gy +thayy dyy = 0. (106)

We also have at the surface the condition

op 0p  _dp op
T ax T Voy W =0

Vor. 244. A. 36
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leading to the identity
&y, cos IX cos my +1ka,; &1 (14 cos 2IX) (1 +cos 2my) + by, cos 2IX -+ &y, cos 2my
— oy, dyy (K2 4-m? cos 20X - 12 cos 2my) + F(t)
— 40010 1 {1%(1 —cos 2Ix) (1 +cos 2my) +m?(1 + cos 2!X) (1 — cos 2my)
+k2(1 4-cos 2Ix) (1 4 cos 2my)}

+ay, kg cos IX cosmy + }a?, k%g(1 4 cos 2Ix) (1 -+ cos 2my)
-+ 2lga,, cos 21X 4 2mgay, cos 2my = 0,

where terms up to the second order only have been retained. The five equations obtained
by equating to zero the coeflicients of the separate terms are all satisfied if

Gy +hgay =0, (107)
Gigg + 21g0ag = mPayy dyy, (108)
dog+2mgagy = lPayydyy (109)
and F(t) = K2y, 0y;. (110)
From (107) we have, with a suitable choice of time origin,
a;; = Acosat, (111)
where 0% = kg. (112)
Then from (108), 1 ’ m2ed?
Ogg = R m?4%¢ sin otcos ot = (2 —T) sin 20t, (113)
and similarly from (109), Pod?

Oy = 122k —m) sin 20t. (114)

This determines the expression for the velocity potential ¢ as far as terms of the second
order. For the coefficients in the equation to the surface, we have from (103) to (106),

ap =——4zsinot, (115)

8

AP 2K2—2kl-1?
Aoy = 8g\1+ S T2 cos2at}, (116)
A’m?( 2k2—2km—m?

Qyy = 8¢ {l S — 2 cos2¢7t}, (117)

A%?
Ayy = 573 {1 —cos 20t}. (118)
Also from (102) we find F(t) = }k242cos 20t. (119)

It will be noted that this result is consistent with the expression (110) for £(t).
At time t = 0 we have a;; = 0 and a,, = 0, but

A?lm? A2m

Aoy = m and Aoy = m . (120)
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Hence there is no instant at which the water surface is perfectly flat, the nearest approach
to flatness being the modulated surface
. Azlm{ m

S 7€ cos 2[x 4+

[

121
S mcos 2my} (121)
"This surface is of the second order, except when / or m is zero, i.e. except when the surface is
modulated in one direction only. If the latter case it has been seen in § 11, equation (61),
that the corresponding surface is of the fourth order.

18. STATIONARY WAVES ON WATER OF FINITE DEPTH

When the water extends downwards to a uniform depth d below the level of the free sur-
face, the velocity potential may be expressed in the form

P = % a,(t) cosh {nk(y -+d)} cosech nkd cos nkx. ‘ (122)
n=0

This satisfies the condition that the vertical component (—d¢/dy) of the velocity is zero at
y = —d. It reduces to the expression (9) when d becomes infinite.
Substituting in (7), we have the equation to the free surface in the form

—gy+ % a,(t) cosech nkd cosh {nk(y + d)} cos nkx

0

—-é Z >, mnk?a,,a, cosech mkd cosech nkd[cosh {Is(m +n) (y+d)}cos {(m n) kx}
m=1n=1

—cosh{k(m—n) (y+d)}cos{(m+n) kx}] = 0. (123)

We assume, as before, that the equation to the free surface can also be reduced to the form
JX,¥,t) = —y+3a,(t) + 2 a,(t) cosnkx = 0. (124)

Then by substituting the value of y given by (124) into (123) we obtain an identity in X,
from which we can derive a set of relations between the a’s and the a’s, analogous to the
previous equations (30) and (31). We shall here consider these relations only as far as terms
of the second order. We find to this order

—%gay+ay+tka, d, — 3%, cosech?kd cosh 2kd = 0, (125)

—ga,+a,cothkd = 0, (126)

— gay+ Yka, d, +d, coth 2kd + 3423 cosech?kd = 0. (127)

The surface condition (5) Ieads to another set of relations, which to the second order
reduce to 4y=0, (128)
a, ke, =0, (129)

o+ 2koty +-k%a, o coth £d = 0. (130)

From (126) and (129) we have

d; = —ka, = — (kgtanh £d) q,.
36-2
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Hence we can take a, = Bsingt, (131)
where 0% = kg tanh Ad. (132)

This shows that the period increases as the depth is decreased. For a depth equal to
one-half of a wave-length the increase compared with that for infinite depth is, however, less
than 0-2 9, ; for a depth of one-quarter of a wave-length it is a little less than 5 %,.

To obtain the value of a, we have, on eliminating a, between (127) and (130) and
substituting for a; and «,

dy coth 2kd + 2kga, = ko?B{} coth? kd + (4 + cosech? kd) cos 2¢t},
and solving this equation

a, = $kB? coth kd — }kB?(coth kd + 2 coth kd cosech? kd) cos 2¢t. (133)

As the depth d of the water is increased this result approximates to the value already
found for a, when the depth is infinite. For a depth equal to one-half of a wave-length
(kd = m), we have coth kd = 1-0037 and cosech? kd = 0-008, so that the result would differ
negligibly from that for infinite depth.

For very small values of d, the factors coth #d and cosech £d will make a, large compared
with a; unless B is sufficiently small. Similar hyperbolic factors will occur in the coeflicients
of the higher harmonics. It is evident therefore that the Fourier expansion (124) for the
free surface can be convergent (if at all) only for sufficiently small values of B whose upper
bound is dependent on the depth d. Hence if periodic stationary waves on water of finite
depth exist, their maximum amplitude will depend on the depth and will tend to zero as
the depth is decreased.

19. WAVE PRESSURE ON A BREAKWATER (DEEP WATER; NORMAL INCIDENCE)

An interesting application of the theory developed in the preceding sections is to compute
the pressure on a breakwater due to wave action. The most interesting examples are those
where there is a crest or a trough at the breakwater.

The general equation for the pressure in the liquid, in dimensional form, is given by (6),
but in this equation we may at once write p, zero, since we are not interested in the atmo-
spheric pressure, and we may also write u?+v2 = 0, since we are at present only concerned
with the pressure at the highest and lowest positions of the surface.

Thus, the pressure on the breakwater is given by

9
p= —nger%

Apg 0D
=-pgy+-§§5t“, (134)

the second equation involving the non-dimensional velocity potential and time.
Now
00

= 34, em cos nx,
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and the 5 can be obtained at the moment of extreme surface modulation from §10. To
obtain the pressure at a crest, we write x = 0, so that all cos nx are unity; and to obtain the
pressure at a trough, we write x = 7, so that cos x, cos 3%, etc., are —1, and cos 2x, cos 4%,
etc., are +-1. v

We find that the hydrostatic pressures on the breakwater at a crest (upper signs) and the
hydrostatic pressure at a trough (lower signs) are given by

p = Loy (A A+ 355 %) o —Fl1 0 (5o () ), (135)
where the y in { } is non-dimensional, i.e. the dimensional y divided by A/2m.

1-0

0-5r 0-5

T

— 2my|A

4, A=045 | b, A =03

Ficures 34, b. The pressure distribution in the liquid, in units Apg/2m, vertically below the crest
and the trough at the moment of greatest surface modulation for the two cases 4 = 0-5 and
4 = 0-3. The vertical unit of distance is also given in non-dimensional form, i.e. the dimen-
sional value of ¥ must be multiplied by 277/A to get the numerical value of the ordinate. The
straight lines through the origin show the hydrostatic pressure which would exist if the wave
height were zero. The pressure curves for all times are asymptotic to these straight lines for
large negative y because at great depths the effects of wave motion disappear.

Figure 3a plots the pressure in units of Apg/2m in terms of the non-dimensional y in the
case 4 = 0-5. The upper curve relates to the crest and the lower curve to the trough. For
large negative y, both curves asymptotically approach —y. For y=0, of course, to be
consistent, we should expand the exponentials, regard y as of order 4, and take only the
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terms in p up to fifth order. The agreement with p as computed from the expression (135)
is, however, quite satisfactory, except very close to the tip. According to the fifth-order
expansions with 4 = 0-5, the crest height is 0-693, whereas equation (135) makes the
pressure vanish at y = 0-74.

Figure 36 is similar to 34, but relates to the value 4 = 0-3. There is no difficulty this time
at the crest because the terms with the larger exponentials make much smaller contributions.
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